Faculty

Faculty

  • Photo for Henry M. Blumberg, MD

    Henry M. Blumberg, MD

    My areas of interest in the field of antimicrobial resistance are focused on highly drug resistant tuberculosis including multidrug resistant (MDR) - and extensively drug resistant (XDR)-TB. Other areas of interest including highly drug resistant nosocomial pathogens.
  • Photo for Eileen M. Burd, PhD, D(ABMM)

    Eileen M. Burd, PhD, D(ABMM)

    My primary role is to ensure up-to-date practices for antimicrobial resistance testing in the clinical microbiology laboratory based on current standards, evolving technologies, and emerging infectious diseases. I review test results with attention to unusually resistant isolates, patterns and trends, and identify organisms of interest for applied research projects.
  • Photo for Graeme L. Conn, PhD

    Graeme L. Conn, PhD

    We are studying the activities and macromolecular structures of 1) ribosomal RNA methyltransferases that confer bacterial resistance to antibiotics (e.g. aminoglycosides), and 2) viral and cellular non-coding RNAs that regulate proteins of the human innate immune system.
  • Photo for Carlos del Rio, MD

    Carlos del Rio, MD

    Since 1997 I have been the PI and Director of the CDC-funded Gonococcal Isolate Surveillance Project (GISP; http://www.cdc.gov/std/gisp/) Regional Laboratory in Atlanta. In that capacity I have been involved in studies of antimicrobial resistance in N. gonorrheae and have contributed data that has led to changes in the CDC guidelines for the treatment of gonorrhea.
  • Photo for Christine M. Dunham, PhD

    Christine M. Dunham, PhD

    Our research is focused on understanding how gene expression is regulated during stress and from antibiotic resistance. Specifically we study the activation of toxin-antitoxin complexes that influence biofilm formation and bacterial persistence, and from ribosomal RNA modifications that confer antibiotic resistance (in collaboration with the Conn lab).
  • Photo for Monica Farley, MD

    Monica Farley, MD

    My major laboratory research interests concern mucosal pathogenesis of Haemophilus influenzae. Experiments have focused on the mechanisms of attachment, colonization and invasion of human nasopharyngeal mucosa by H. influenzae. Current laboratory research is also focused on molecular epidemiology of invasive bacterial pathogens including H. influenzae, Streptococcus pneumoniae, and MRSA.
  • Photo for Scott Fridkin, MD

    Scott Fridkin, MD

    Director of Antimicrobial Stewardship Research, Emory Healthcare; Professor of Medicine (Infectious Diseases) and Epidemiology.
  • Photo for Haian Fu, PhD

    Haian Fu, PhD

    We utilize chemical biology approach to discover agents that reverse microbial resistance in collaboration with microbiologists.
  • Currently no photo for Neel R. Gandhi, MD

    Neel R. Gandhi, MD

    Since 1998, my work has focused on clinical research and epidemiology of Tuberculosis and HIV co-infection, with an emphasis on MDR and XDR TB. I have focused on specific aspects of the epidemic such as transmission of drug resistant TB, integration of TB and HIV treatment, and the molecular mechanisms of resistance to TB medications, including new drugs such as bedaquiline, delaminid and pretomanid.
  • Photo for Joanna B. Goldberg, PhD

    Joanna B. Goldberg, PhD

    My research program focuses on understanding mechanisms of bacterial pathogenesis, with the goal of developing novel therapies to prevent or treat life-threating infections, particular lung infections in patients with cystic fibrosis.
  • Photo for Jesse T. Jacob, MD, MSc

    Jesse T. Jacob, MD, MSc

    I focus on two major, related areas of healthcare epidemiology related to multi drug resistant pathogens: 1) understanding the risk factors for, and outcomes of, infections caused these organisms, especially as it relates to antibiotic stewardship; and 2) preventing the transmission of these pathogens causing healthcare-associated infection, particularly environmental assessment and interventions.
  • Currently no photo for Daniel Kalman, PhD

    Daniel Kalman, PhD

    My laboratory studies pathogen interactions with host. Because host molecules used by various pathogens are frequently dysregulated in cancer, we identified anti-cancer therapeutics with significant anti-pathogen activity, which are less likely to engender resistance. Recent studies in primates indicate that the cancer drug Gleevec has potent activity against tuberculosis, a result we are currently working to extend into human trials against multi-drug resistant TB.
  • Photo for Russell Kempker, MD, MSc

    Russell Kempker, MD, MSc

    My research focuses on drug-resistant tuberculosis with a specific interest in the clinical impact of rapid diagnostics on treatment outcomes and the second-line anti-tuberculosis drug pharmacology.
  • Photo for Minsu Kim, PhD

    Minsu Kim, PhD

    Single-cell-level study to characterize how genetically-identical bacterial cells may respond to antibiotic treatments differently
  • Photo for Colleen S. Kraft, MD, MSc

    Colleen S. Kraft, MD, MSc

    Genomics for applied clinical microbiology.
  • Photo for Bruce R. Levin, PhD

    Bruce R. Levin, PhD

    The goal of our research is to develop protocols for the administration of antibiotics in individual and groups of patients that will maximize the rate of clearance of infections whilst minimizing the likelihood of the emergence and ascent of resistance during therapy and the spread of resistant in the community.
  • Photo for Karen Levy, PhD, MPH

    Karen Levy, PhD, MPH

    Karen Levy, PhD, MPH, Emory University, Rollins School of Public Health, Department of Environmental Health
  • Photo for Joseph Daniel Lutgring, MD

    Joseph Daniel Lutgring, MD

    Dr. Lutgring is an assistant professor at Emory in the School of Medicine (Department of Medicine, Division of Infectious Diseases). In addition, he works at the Centers for Disease Control and Prevention in the Division of Healthcare Quality Promotion. His clinical and research interests are in the areas of antibiotic resistance (particularly gram-negative bacteria) and the clinical microbiology laboratory.
  • Photo for Shonna M. McBride, PhD

    Shonna M. McBride, PhD

    Clostridium difficile, or C. diff as it is commonly known, is considered an "Urgent" antibiotic resistance threat by the CDC. Our research is focused on two distinct aspects of C. difficile pathogenesis: the resistance of the bacterium to antimicrobials and the formation of dormant spores in the host.
  • Photo for Nael A. McCarty, PhD

    Nael A. McCarty, PhD

    Basic and translational research in Cystic Fibrosis, a genetic disease characterized by recurrent pulmonary bacterial infections, often by many species resistant to antimicrobials.
  • Photo for John E. McGowan, Jr., MD

    John E. McGowan, Jr., MD

    My primary research interest is the epidemiology of antibacterial resistance, especially as it applies to the healthcare setting, and as it is affected by antimicrobial use and appropriate diagnostic testing.
  • Photo for Mark Mulligan, MD, FIDSA

    Mark Mulligan, MD, FIDSA

    As an infectious diseases clinician, I encounter antimicrobial resistance as a frequent challenge in my infected patients. As a translational researcher I conduct clinical and laboratory studies to discover and evaluate new drugs and diagnostic tests, as well as vaccines and monoclonal antibodies, to improve our ability to treat patients infected with resistant organisms.
  • Photo for Polly J. Price, MA, JD

    Polly J. Price, MA, JD

    The recipient of a public health law grant from the Robert Wood Johnson Foundation, Professor Price has published articles on law and policy relevant to control of drug-resistant tuberculosis. She also works with the U.S.-Mexico Border Health Commission's Tuberculosis Consortium.
  • Photo for Cassandra L. Quave, PhD

    Cassandra L. Quave, PhD

    The Quave research group investigates the anti-infective potential of botanical natural products for the treatment of multi-drug resistant pathogens. Research is focused on the discovery of bacterial pathogenesis and virulence inhibitors with the goal of developing adjuvant therapies to enhance and restore efficacy of existing lines of antibiotics.
  • Photo for Philip Rather, PhD

    Philip Rather, PhD

    Role of RND-type efflux systems in beta-lactam resistance in Acinetobacter baumannii. Role of phase variation and quorum sensing in regulating intrinsic antibiotic resistance in A. baumannii.
  • Photo for Timothy Read, PhD

    Timothy Read, PhD

    I am interested in comparative genomics of pathogens to discover novel traits that influence resistance and using genomic and metagenomic information to predict antibiotic resistance.
  • Photo for Jyothi Rengarajan, PhD

    Jyothi Rengarajan, PhD

    Mechanisms of tuberculosis (TB) pathogenesis and host immunity to Mycobacterium tuberculosis (Mtb) infection in mice and humans; targeting pathogen- and host-specific factors for developing immunomodulatory therapeutics for TB and/or adjunctive therapy against drug-susceptible and drug-resistant TB.
  • Photo for Nadine Rouphael, MD, Ms

    Nadine Rouphael, MD, Ms

    Clinical Trials Experience in Vaccines and Therapeutics
  • Photo for Sarah W. Satola, PhD

    Sarah W. Satola, PhD

    Evaluating methods for detection of heteroresistant vancomycin intermediate Staphylococcus aureus (hVISA) and characterization of MRSA infections with reduced levels of vancomycin susceptibility.Defining the spectrum of genetic variant that cause reduced to non-susceptibility to vancomycin in S. aureus. Development of a genetic assay for vancomycin intermediate S. aureus (VISA).
  • Photo for Raymond F. Schinazi, PhD, DSc

    Raymond F. Schinazi, PhD, DSc

    The Laboratory of Biochemical Pharmacology (LOBP) has a primary research focus of drug discovery and drug development of novel antiviral agents against HIV, hepatitis B and C, Chikungunya, Ebola, Dengue, and other emerging viruses. Using high-throughput screening, we determine antiviral potency, selection for drug resistance and cytotoxicity.
  • Photo for James P. Steinberg, MD

    James P. Steinberg, MD

    My research interest is in the epidemiology and prevention of healthcare associated infections including those caused by antibiotic resistant pathogens. Recent work has focused on measurement and prevention of catheter associated bloodstream infections and the study of secular trends of infections caused by antibiotic resistant pathogens including MRSA.
  • Photo for Sean Stowell, MD, PhD

    Sean Stowell, MD, PhD

    Our work focuses on understanding mechanism(s) whereby innate antimicrobials kill microbes.
  • Photo for W. Robert Taylor, MD, PhD

    W. Robert Taylor, MD, PhD

    Infections associated with medical devices remain a significant problem in clinical medicine. Our laboratory has been specifically interested in developing novel techniques to image bacteria in vivo and to apply these strategies for targeted delivery of antibiotics.
  • Photo for Jorge E. Vidal, PhD

    Jorge E. Vidal, PhD

    My laboratory investigates (1) antibiotic resistance mechanism(s) of S. pneumoniae strains, including gene transfer mechanisms, (2) global epidemiology of pneumococcal strains resistant to antibiotics, (3) the pressure of current pneumococcal vaccines on the spread of, or changes on, antibiotic resistance and (4) role of pneumococcal biofilm structures on antimicrobial resistance.
  • Photo for William Wuest

    William Wuest

    Inspired by Nature, our lab leverages organic synthesis to develop antibiotics. In particular, we study how natural products with anti-virulence and/or narrow-spectrum activity are capable of eliciting their response. Another aspect of our work focuses on the mechanism by which bacteria resist commonly used antiseptics which has led to the development of improved compounds.